白嫩白嫩BBWBBWBBW,学长被C哭着爬走又被拉回来,顶级私人家庭影院,女朋友的妈妈电影完整版

产品列表PRODUCTS LIST

影响介质损耗测试仪的tgδ因素和结果的分析
点击次数:1676 更新时间:2014-08-01

   在排除外界干扰,正确用介质损耗测试仪测出tgδ值后,还需对tgδ的数值进行正确分析判断。为此,就要了解tgδ与哪些因素影响有关。根据tgδ测量的特点,除不考虑频率的影响(因施加电压频率基本不变)外,还应注意以下几个方面的问题。

1、温度的影响

    温度对tgδ有直接影响,影响的程度随材料、结构的不同而异。一般情况下,tgδ是随温度上升而增加的。现场试验时,设备温度是变化的,为便于比较,应将不同温度下测得的tgδ值换算至20℃。例如,25℃时测得绝缘油的介质损失角为0.6%,查附录B得25℃时的系数为0.79,因此20℃时的绝缘油介质损失角即为tgδ20=0.6%×0.78=0.47%。

   应当指出,由于被试品真实的平均温度是很难准确测定的,换算系数也不是十分符合实际,故换算后往往有很大误差。因此,应尽可能在10~30℃的温度下进行测量。

   有些绝缘材料在温度低于某一临界值时,其tgδ可能随温度的降低而上升;而潮湿的材料在0℃以下时水分冻结,tgδ会降低。所以,过低温度下测得的tgδ不能反映真实的绝缘状况,容易导致错误的结论,因此,测量tgδ应在不低于5℃时进行。

   油纸绝缘的介质损耗与温度关系取决于油与纸的综合性能。良好的绝缘油是非极性介质,油的电 主要是电导损耗,它随温度升高而增大。而纸是极性介质,其年 由偶极子的松弛损耗所决定,一般情况下,纸的培 在一40~60℃的温度范围内随温度升高而减小。因此,不含导电杂质和水分的良好油纸绝缘,在此温度范围内其边 没有明显变化。对于电流互感器与油纸套管,由于含油量不大,其主绝缘是油纸绝缘。因此,对把 进行温度换算时,不宜采用充油设备的温度换算方式,因为其温度换算系数不符合油纸绝缘的tgδ随温度变化的真实情况。

    当绝缘中残存有较多水分与杂质时,tgδ与温度关系就不同于上述情况,tgδ随温度升高明显增加。如两台220kV电流互感器通入50%额定电流,加温9h,测取通入电流前后tgδ的变化,tgδ初始值为0.53%的一台无变化,tgδ初始值为0.8%的一台则上升为1.1%。实际上初始值为0.8%的已属非良好绝缘,故tgδ随温度上升而增加。说明当常温下测得的tgδ较大,在高温下tgδ又明显增加时,则应认为绝缘存在缺陷。

2、试验电压的影响

   良好绝缘的tgδ不随电压的升高而明显增加。若绝缘内部有缺陷,则其tgδ将随试验电压的升高而明显增加。图表示了几种典型的情况:

   曲线1是绝缘良好的情况,其tgδ几乎不随电压的升高而增加,仅在电压很高时才略有增加。

   曲线2为绝缘老化时的示例。在气隙起始游离之前,tgδ比良好绝缘的低;过了起始游离点后则迅速升高,而且起始游离电压也比良好绝缘的低。

    曲线3为绝缘中存在气隙的示例。在试验电压未达到气体起始游离之前,tgδ保持稳定,但电压增高气隙游离后,tgδ急剧增大,曲线出现转折。当逐步降压后测量时,由于气体放电可能已随时间和电压的增加而增强,故tgδ高于升压时相同电压下的值。直至气体放电终止,曲线才又重合,因而形成闭口环路状。

    曲线4是绝缘受潮的情况。在较低电压下,tgδ已较大,随电压的升高tgδ继续增大;在逐步降压时,由于介质损失的增大已使介质发热温度升高,所以吃 不能与原数值相重合,而以高于升压时的数值下降,形成开口环状曲线。

    从曲线4可明显看到,tgδ与湿度的关系很大。介质吸湿后,电导损耗增大,还会出现夹层极化,因而tgδ将大为增加。这对于多孔的纤维性材料(如纸等)以及对于极性电介质,效果特别显著。

    综上所述,tgδ与介质的温度、湿度、内部有元气泡、缺陷部分体积大小等有关,通过tgδ的测量发现的缺陷主要是:设备普遍受潮,绝缘油或固体有机绝缘材料的普遍老化;对小电容量设备,还可发现局部缺陷。必要时,可以作出tgδ与电压的关系曲线,以便分析绝缘中是否夹杂较多气隙。对tgδ值进行判断的基本方法除应与有关“标准”规定值比较外,还应与历年值相比较,观察其发展趋势。根据设备的具体情况,有时即使数值仍低于标准,但增长迅速,也应引起充分注意。此外,还可与同类设备比较,看是否有明显差异。在比较时,除tgδ值外,还应注意Cx值的变化情况。如发生明显变化,可配合其他试验方法,如绝缘油的分析、直流泄漏试验或提高测量tgδ值的试验电压等进行综合判断。

点击这里给我发消息
点击这里给我发消息
点击这里给我发消息
点击这里给我发消息